Public Health Reports

Vol. 54 • OCTOBER 6, 1939 • No. 40

PREVALENCE OF POLIOMYELITIS

During the week ended September 30, 468 cases of poliomyelitis were reported in the United States, as compared with 484 cases during the preceding week, and a median of 277 cases for the corresponding week of the 5 years 1934-38. Decreases occurred in a number of the States which have been reporting the largest numbers of cases, while small increases occurred in several States which have been reporting very few cases. The States reporting 10 or more cases are given in the following table:

	Cases		Cases
New York	109	Minnesata	
New Jew Yoric City...---	17	Iowa	16
	36		16
Philadelphis	19	Colorado--..-----------1.-	${ }^{13}$
Illinois	-13	New Mexico.-	1
Michigan ${ }_{\text {Detroit }}$	${ }_{33}^{58}$	California-	13 57
		Los Angel	

STABILIZED METHOD OF FORECASTING POPULATION ${ }^{1}$

By Bernard D. Karpinos, Assistant Statistician, United States Public Health Service

Broadly viewed, there are two types of population estimates, from the standpoint of time. There are those estimates which deal with reconstructing the past, and there are those that are directed toward forecasting the future. The two types of estimates are quite distinct, and their underlying principles are considerably different. The first type aims at more or less accurate numerical evaluations of the actual populations, while the other basically strives to obtain the best estimates that could be expected if certain concatenations of factors that have been operating within the population in the past should continue to do so in the future.

[^0]Estimates of the first type may be classified as precensal, intercensal, and postcensal. Precensal estimates, that is, estimates for years previous to any date for which reliable census data are available, are frequently made by backward extrapolations. ${ }^{2}$ This is accomplished by applying a certain mathematical function to the given data and extending the function into the past. The problem of intercensal estimates has been quite satisfactorily solved on the basis of either arithmetic or geometric interpolations. The postcensal estimates are of two kinds, depending on the data at hand.

Where no records of births and deaths are available for the given period, or where such records do exist but there is no possibility of obtaining estimates on net migration, postcensal estimates are customarily made by forward extrapolations of the latest intercensal increases, again on the basis of either an arithmetic or a geometric progression. Long-time functions, as the logistic curve or any other function that is based on a longer period than two censuses, which might be profitably utilized for short-range predictions of larger populations, would hardly work in making estimates for small units of populations, such as cities, counties, and even States.

In cases where birth and death data are available, and where, in addition, there is also some possibility of obtaining fair estimates on net migration, the proper procedure, of course, is to add to the latest census the population increase based on these factors. Natural and simple in its application, this well-known method, recently called "migration and natural increase method" (15), presents a troublesome problem when applied to State or city data, owing to the fact that internal migration is one of the factors most difficult to determine. School statistics, frequently supplemented by data from other existing population sources, recently have been widely exploited for making such estimates of migration, but this is substantially a loosely defined procedure. ${ }^{3}$

II

In dealing with estimates of the second type, namely, forecasts of future populations, there are two possibilities from which to choose. One may fit a curve to the data for the past and project it into the future. This can be achieved either in the form of a free-hand graphical representation, or in terms of finding a mathematical equation to express the functional relationship of the data. In

[^1]either case no attempt is made to analyze the determining factors. ${ }^{4}$ The end result is the only guide, and the main assumption is that the existent conditioning factors will remain unaltered during the period for which the forecast is made. There is cortainly a rationale behind each of these curves, it being claimed that the logistic curve is the one more "in harmony with the known facts with regard to population growth and with our rational ideas on the subject" ("2). ${ }^{5}$

The second possibility in dealing with population forecasts is to start with a population of a certain point in time. Usually, the latest census with its age, sex, race, and nativity distribution of the population is taken as a point of departure. No law of population growth is sought in this case. By assigning to the selected population different birth and death rates and different net migrations, variously combined, there are gradually built up different population forecasts. The assigned birth and death rates, as well as the net migrations, are taken within reasonable limits of credibility determined by the prevalent trends. The estimates worked out by P. K. Whelpton (16) are of this type. This is, of course, a laborious procedure, and for this reason the number of combinations has to be limited. The building up of the populations is done essentially on the basis of survival factors. ${ }^{6}$

The method of population forecasting described here is of the latter type. It is adaptable mainly for long-time forecasts. It is simple and flexible in its application, and it does away with the laborious procedure involved in the previous method. It utilizes the stabilized age compositions, and it is called, accordingly, "stabilized method of forecasting populations."

Stabilized age compositions are, as is well known, hypothetical structures. They are derived on the assumption that the populations grow freely under the influence of actual or postulated fertility and mortality without being disturbed either by emigration or immigration. Once "left alone," as shown by Sharpe and Lotka (18), such populations will ultimately, that is to say after a considerable time, conform to fixed age structures, and they will then grow at uniform rates. These ultimate age compositions are called stabilized age compositions, and the rates have been termed "true" rates of natural increase.
Being solely a function of the actual or assigned fertility and mortality of the population, independent of the present age structure, stabilized age compositions can readily be computed. Such age compositions were calculated for different true rates of natural increase,

[^2]Table 1A.-Age distributions of stabilized populations of different true rates of natural increase (r), bascd on the life tables for the white population of the United States, 1929-81 ${ }^{1}$

Age group	$\begin{gathered} r= \\ .0250 \end{gathered}$	$\begin{aligned} & r= \\ & .0225 \end{aligned}$	$r=$.0200	$\begin{gathered} r= \\ .0175 \end{gathered}$	$\begin{aligned} & r= \\ & .0150 \end{aligned}$	$\begin{array}{r} r= \\ .0125 \end{array}$	$\begin{aligned} & r= \\ & .0100 \end{aligned}$	$\begin{gathered} r= \\ .0075 \end{gathered}$
Under 5.	15. 13	14. 30	13.46	12.68	11.00	11.13	10. 39	9.66
5-9	13.17	12.60	12.04	11.46	10.89	10.32	9.75	9.18
10-14	11.54	11.18	10.81	10.43	10.03	9.62	9.21	8. 78
15-19	10.12	9.91	9.70	9.47	9.22	8.98	8.68	8.39
20-24.	8.78	8.73	8.65	8.56	8.44	8.30	8.14	7.97
25-29	7.61	7.66	7.69	7.70	7.69	7.66	7.61	7.54
30-34	6.59	6.72	6.83	6.92	7.00	7.06	7.10	7.12
35-39.	5.68	6.87	6.04	6. 20	6.35	6.48	6.60	6. 70
40-44.	4.87	5.09	5.30	5.51	5. 72	5.91	6.09	6. 27
45-49	4.13	4.37	4.61	4.85	5.10	5.34	5. 57	5. 80
50-54.	3.45	3. 70	3. 95	4. 21	4.48	4.75	5.02	5. 29
55-59.	2.82	3.06	3.31	3.57	3.84	4.13	4.42	4.72
60-64.	2.22	2.44	2.67	2.92	3.18	3.46	3.75	4.05
65-69	1.65	1.84	2.04	2.25	2.49	2.74	3.00	3. 29
70-74.	1.12	1.28	1.42	1. 59	1.78	1.98	2.20	2.44
75 and ove	1.11	1.28	1.47	1.68	1.91	2.17	2.46	2.78
Age group	$\begin{aligned} & r= \\ & .0050 \end{aligned}$	$\begin{aligned} & r= \\ & .0025 \end{aligned}$	$\begin{aligned} & r=0 \\ & .000 \end{aligned}$	$r=$ -.0025	$r=$ -.0050	$r=$ -.0075	$\begin{gathered} r= \\ -.0100 \end{gathered}$	$r=$ -.0125
Under 5.	8.97	8.30	7.62	7.04	6.45	8. 90	5.37	4.87
6-9...	8. 63	8.08	7.55	7.03	6.52	6.04	5. 57	8. 11
10-14.	8.36	7.92	7.50	7.07	6.64	6.22	5.81	6. 40
15-19.	8.08	7.76	7.43	7.09	6.75	6.41	6.08	5. 70
20-24.	7.77	7.55	7.33	7.08	6.83	6.56	6.28	5. 98
25-29.	7.44	7.32	7.19	7.04	6.87	6. 69	6.48	6.25
30-34.	7.12	7.16	7.06	7.00	6.92	6.81	6.69	6.53
35-39.	6.79	6.85	6.90	6.93	6.93	6.91	6.87	6.80
40-44.	6.43	6.57	6. 70	6.81	6.90	6.97	7.01	7.02
5-49.	6.03	6.24	6.44	6.63	6.80	6.95	7.09	7.19
50-54.	5.57	5.83	6.10	6.35	6.60	6.83	7.06	7.25
65-59.	5.02	5. 33	8. 64	5. 95	6.26	6.56	6.86	7.13
60-64.	4.37	4.69	5.03	5. 38	5. 73	6.08	6.43	6.77
65-69.	3. 59	3.91	4.24	4.59	4.95	5.32	5. 70	6. 08
70-74.	2. 70	2.97	3. 27	3.58	3.91	4.28	4.62	4.99
75 and over.	3.15	3.53	3.97	4.43	4.94	5.49	6.09	6.92

${ }^{1}$ See footnote to table 10.
Table 1B.-Age distribution of stabilized populations for different true rates of natural increase (r), based on the life tables for the colored population of the United States, 1929-31 ${ }^{1}$

Age group	$\begin{gathered} r=0 \\ .0100 \end{gathered}$	$\begin{gathered} r= \\ .0075 \end{gathered}$	$\begin{gathered} r=0 \\ .0050 \end{gathered}$	$. \Gamma=$	$r=0$	$\underset{-.0025}{\boldsymbol{r}=}$	$r=$	$\begin{gathered} r= \\ -.0075 \end{gathered}$	$r=$
Onder 5	12.09	11.35	10.64	9.93	9.27	8.61	7.98	7.38	6.80
5-9	11. 28	10.71	10.16	9.69	9.08	8. 55	8.02	7.51	7.01
10-14	10. 61	10.22	9.82	9.40	8.99	8.57	8.14	7.72	7.30
15-19	9.88	9.63	9.37	9.09	8.79	8.49	8.17	7.84	7.51
20-24.	9.02	8.91	8.78	8.62	8.45	8.28	8.06	7.82	
25-29	8.15	8.15	8.13	8.08	8.02	7.94	7.83	7.71	7.56
30-34	7.31	7.40	7.47	7.52	7.56	7.58	7.57	7.54	7.49
35-39	6.50	6.68	6.81	6.94	7.07	7.17	7.25	7.32	7.36
40-44	5. 69	5.91	6.12	6.31	6.51	6.69	6.85	7.00	7.18
45-49	4.89	5.14	8. 39	5.63	5.88	6.12	6. 35	6.56	6.77
$50-54$	4.09	4. 35	4.62	4.89	5.17	8. 44	B. 72	8. 89	6. 26
$55-5$	3. 29	3.55	8.81	4.09	4. 37	4.68	4.98	8. 28	6. 56
$60-64$	2.55	2.78	8.03	3.28	8.56	8.84			
65-69	1.88	2.08	2.29	2.52	2.76	3.02	8.29	8. 58	8.88
70-74	1. 29	1.44	1.61	1.79	1.99	2.21	2.44	2.68	8. 2. 98
75 and ove	1.50	1.72	1.95	2.26	2.53	2.85	8.22	3.63	4.08

[^3]Table 1C.-Age distribution of stabilized populations for different true rates of natural increase (r), bascd on hypothetical life table ${ }^{1}$

Age group	$\begin{gathered} r= \\ .0100 \end{gathered}$	$\begin{aligned} & r= \\ & .0075 \end{aligned}$	$\begin{gathered} r= \\ .0050 \end{gathered}$	$\begin{gathered} r= \\ .0025 \end{gathered}$	$\begin{gathered} r= \\ .0000 \end{gathered}$	$\begin{gathered} r= \\ -.0025 \end{gathered}$	$\begin{gathered} r= \\ -.0050 \end{gathered}$	$\begin{gathered} r= \\ -.0075 \end{gathered}$	$\begin{gathered} r= \\ -.0100 \end{gathered}$
Under 5	9.66	8.94	8.24	7.58	6.95	6.34	5. 77	5. 24	4.73
5-9	9.12	8.55	7.98	7.43	6.90	6.38	5.88	5. 40	4.94
10-14.	8.64	8.20	7.75	7.31	6.87	6.43	6.00	5. 58	5. 17
15-19.	8.18	7.86	7.53	7.19	6.84	6.48	6.12	5. 77	5.41
20-24	7.72	7.51	7.28	7.04	6.78	6. 51	6.23	5.94	5.64
25-29.	7.27	7.16	7.03	6.88	6.71	6.52	6.32	6. 10	5.87
30-34.	6.82	6. 80	6.76	6.70	6.62	6.52	6.39	6. 25	6.09
35-39.	6.39	6.45	6.50	6.52	6.52	6.50	6.46	6.39	6.30
40-44	5.98	6.12	6. 23	6.34	6.42	6.47	6.51	6.53	6.52
45-49.	5.57	5.77	5.95	6.13	6.28	6.42	6. 54	6. 64	6.71
50-54	5.15	5.39	5.64	5. 88	6.10	6.32	6.51	6.69	6.85
55-59.	4.69	4.98	5.27	5.56	5.85	6.13	6.40	6.66	6.91
60-64	4.17	4.49	4.81	5.14	5.47	5.80	6. 14	6.47	6. 79
65-69.	3. 58	3. 89	4. 23	4. 57	4.93	5. 29	5. 67	6.05	6.43
70-74.	2.89	3.18	3.50	3.83	4.18	4.55	4.93	5.33	5. 73
75-79	2.08	2.33	2.59	2.87	3.17	3.50	3.84	4. 20	4. 58
80 and over.	2.09	2.37	2. 70	3.02	3.40	3.83	4.29	4.78	6. 31

${ }^{1}$ The stabilized age compositions were computed on the basis of the formula given in footnote 7 . The r values in tables 1A and 1B are based on the resrective life tables of the Metropolitan Life Insurance Co. The r 's of table 1C were derived from the hypothetical life table based on assumed ratios to the New Zealand mortalities, taken from Dublin and Lotka (2), page 194.
combined with the mortality rates, as expressed by three different life tables. ${ }^{7}$ They are given in tables $1 \mathrm{~A}, 1 \mathrm{~B}$, and 1 C . The stable age compositions of table 1A are based on the life tables for the white population in the United States as of 1929-1931; those of table 1B are based on the life tables of the Negro population of 1929-1931; and those of table 1C were derived on the basis of the hypothetical life table. ${ }^{8}$ Thus, the column headed with a true rate of natural increase of $-.0025(r=-.0025)$ in table 1 A , for instance, shows the stabilized age composition of a population with such a true rate of increase, when the existing mortality rates of the white population are assumed. Likewise, the corresponding column in table 1B assumes the mortality of the Negro life table, while that of table 1C refers to the hypothetical life table. These three age compositions, it should be noted, differ, although they are based on the same true rates of natural increase. The Negro life table shows the youngest age structures because of its higher mortality; the hypothetical life table shows the oldest age structures because of its lower mortality.

As stated above, any concrete population, no matter what its prevailing age composition is, if subjected to the assumptions mentioned, would in due time reach such a stabilized age composition. Studies of different types of populations, different with respect to their true rates

[^4]of natural increase as well as their prevailing age compositions, have shown that within two generations, about 60 years, such populations will practically attain the theoretically computed stabilized age compositions, assuming the mentioned postulates to remain unchanged (5,11). Of course, such a constancy of either fertility or mortality for such a length of time is not to be expected. Yet the fact that such an adjustment could practically be accomplished within 60 years, or even less, becomes the underlying principle of the method. The use of the method will be illustrated by concrete examples.

III

The white population of the United States had about reached a stationary true rate of natural increase around 1930, and it declined below that rate in the years following (6). Two main questions may arise in connection with such a change. What changes in the age structure of the population can be anticipated owing to such changes in true growth? The student of education, for instance, may concern himself with the expected relative magnitude of the younger age groups with respect to the total population; on the other hand, the student of old-age pensions may be interested in the older age groups, whereas the concern of other students of social problems may be the general changes in the structure of the population. The answer to this question can be read directly from the different columns in table 1. In a population of zero rate (table $1 \mathrm{~A}, r=0$), assuming the present mortality of the white population, 7.65 percent of the total population would be under 5 years of age, and 16.51 percent 60 years and over; under the same conditions of mortality, in a population of a negative r, say $r=-.0025,7.04$ and 17.98 percent would be in the respective age groups." The same r values on the hypothetical life table would give, for the age group under 5 years, 6.95 and 6.34 percent, and for the group 60 years and over, 21.15 and 22.97 percent, respectively, showing much older populations (table 1C). In the same manner all other stabilized age compositions may be considered. The latter reveal immediately what changes in the age structures may be expected under different "true" rates of increase combined with different mortality rates.

The chief interest, however, may lie not only in finding the expected relative degree of concentration within the age groups, but also in estimating the expected actual numbers either of the total population or of the separate age groups. This may be of specific concern in dealing with populations of zero or negative r values.

[^5]It is a well-established fact, although not commonly realized, that zero or negative true rates of increase do not signify immediate cessation of growth or immediately declining populations. In spite of such true rates, the populations may keep on increasing for a while, owing to the so-called "favorable" age structure of the populations. This intermediate growth is of significance, for it is of interest to know what increase in numbers may be expected owing to the effects of the age factors before the population becomes either stationary or begins to decline. This is the second main question which arises in connection with declining rates of natural increase, and it, too, can be easily answered.

Table 2.-True yearly rates of natural increase and their corresponding net reproduction rates, and stabilized birth and death rates, based on the life tables for the white and colored population of the United States, 1929-31, and the hypothetical life table ${ }^{1}$

True yearly rates of natural increase (r)	Net reproduction rates ($\boldsymbol{R}_{\mathrm{o}}$) based on life tables			Stabilized birth rates based on life tables			Stabilized death rates based on life tables		
	White	Negro	Hypothetical	White	Negro	Hypothetical	White	Negro	Нуроthetical
0.0100	1.32	1.30	1.32	22.80	27.59	20. 40	12.80	17.59	1040
0.0075	1.23	1.22	1.23	21.08	25. 75	18.77	13. 58	18. 25	11. 27
0.0050	1.15	1.14	1.16	19.44	23.99	17.20	14.44	18.99	12. 20
0.0025	1.07	1.07	1.07	17.88	22.27	15. 72	15.38	19.77	13.22
0.0000	1.00	1.00	1.00	16.39	20.63	14.31	16.39	20.63	14.31
-0.0025.	. 93	. 94	. 93	14.97	19. 06	12.99	17.47	21. 56	15. 49
-0.0050	. 87	. 88	. 87	13. 64	17. 56	11.76	18.64	22.56	16.76
-0.0075	. 81	. 82	. 81	12.39	16. 13	10. 59	19.89	23.63 24.77	18.09 19.51
-0.0100........	. 75	. 77	. 75	11. 22	14.77	9.51	21.22	24.77	19.51

${ }^{1}$ The net reproduction rates were computed on the basis of the formula $(1+r) r=R_{0}(1)$, where " r " is the true yearly rate of increase, given in the first column of the table; T stands for the length of a generation, and R_{0} designates the computed net reproduction rates. The lengths of a genera!ion (T) were calculated as $28.05,26.30$, and 28.11 years for the white, the Negro, and hypothetical life tables, respectively. The stabilized birth rates were computed as $1 / \Sigma s(a) e^{-r a}$ (see footnote 7) The stabilized death rate is, of course, calculated by subtracting from the stabilized birth rate the corresponding true rate of natural increase (1.000r).

If it be true that within 60 years a population could adjust itself so that the prevailing age structure would be practically that of the theoretically computed stabilized age composition, then the population of 1930 , if this year is taken as the starting point, would attain in 1990 the age structure of the stabilized age composition. The survivors of the population of 1930 will, of course, in 1990 constitute the age groups of 60 years and over. Their numbers are easily calculated on the basis of the survival factors (L_{x+60} / L_{x}), as given in table 3. It is necessary to deal in this connection with only the first nine 5 -year age groups, those under 45 years of age. On this basis, assuming the mortality rates of 1929-31 to continue, there would be about $22,994,000$ survivors of the 1930 white population in 1990. In a stationary population these survivors would constitute 16.51 percent of the total population (table $1 \mathrm{~A}, r=0$); in a population with an r value of -.0025 , they would make up 17.98 percent of the population.

By dividing the number of survivors by 16.51, an estimate of population that may be expected of a zero true rate of increase is obtained;

Table 3.-Survival factors for white and Negro populations, 1929-s1 ${ }^{1}$

Age groups	L_{x+46} / L_{3}		L_{s+10} / L_{*}		$L_{s+\infty} / L_{\text {\% }}$		$\boldsymbol{L}_{\boldsymbol{x}+\infty} / L_{\text {s }}$	
	Male	Female	Male	Female	Male	Female	Male	Female
	WHITE							
Under 5.	0.83686	0.85514	0. 77690	0.81609	0.71075	0.76287	0. 62445	0.68970
5-9	. 78871	. 82684	. 72155	. 77273	. 63395	. 68882	. 22374	. 69903
10-14	. 72724	. 77739	. 63894	. 70284	. 52787	. 60265	. 39678	. 47451
15-19	. 64543	. 70834	. 53323	. 60737	. 40081	. 47823	. 26008	. 32816
20-24.	. 54134	. 61527	. 40691	. 48445	. 26402	. 33242	. 13634	. 18381
25-29.	. 41435	. 49853	. 26885	. 33797	. 13884	. 18888	. 05238	. 07659
30-34	. 27440	. 34430	. 14170	. 19738	. 053338	. 07803	. 01290	. 02121
35-39.	. 14528	. 19449	. 05473	. 07971	. 01323	. 02167	. 00158	. 00320
$\begin{aligned} & 40-44-\ldots . ~ \end{aligned}$. 05657	. 08182	. 01367	. 02224	. 00163	. 00329	. 00008	. 00018
	. 01431	. 02302	. 000171	. 003340	. 00007	. 00019		
	. 00182	. 000357	. 00007	. 00020				
	negro							
$\begin{aligned} & \text { Under } 5 . \\ & 5-9 \\ & 10-14 . . . \\ & 15-19 . . . \end{aligned}$	0.62365 . 55917 .47963.38961	0.64523.5922.4929.40937	$\begin{array}{r} 0.54744 \\ .47463 \\ .39153 \\ .30863 \end{array}$	$\begin{array}{r} 0.56803 \\ .48843 \\ .40020 \\ .31898 \end{array}$	$\begin{array}{r} 0.48467 \\ .38745 \\ .30239 \\ .21802 \end{array}$	0. 47899 . 39658 . 31184	0.37932 . 29924 .21361	$\begin{gathered} 0.38891 \\ .30902 \\ .22998 \end{gathered}$
								. 16109
	$\begin{array}{r} 32094 \\ .23922 \\ .15928 \\ .09870 \end{array}$. 33242	. 22872	. 24515	. 14192	. 16787	. 07441	. 10335
		. 25787	. 14974	. 17658	. 07852	. 10871	. 03047	. 05444
		. 18692	. 08352	. 11507	. 03242	. 05782	. 00752	. 01980
		. 12267	. 03482	. 06143	. 00807	. 02111	. 00077	. 00377
	.03798 00980 00107 0000	. 06640	. 00881	. 02282	. 00084	. 00408	. 00002	. 00023
		. 02512	. 00094	. 00449	. 00002	. 00026		
		. 00510	. 00002	. 00 ก29				
		. 00034						

${ }^{1}$ Based on the life tables of the Metropolitan Life Insurance Co. 1829-31.
Table 3A.-Hypothetical life table (both sexes) ${ }^{1}$

Age group	$\boldsymbol{L}_{\mathbf{z}}$	L_{x+46} / L_{z}	L_{x+60} / L_{z}	$L_{x+40} L_{z}$	L_{x+60} / L_{z}
Under 5.	97, 079	. 90428	. 87853	. 84220	. 78743
5-9	96, 391	. 88480	. 84821	. 79305	. 71453
10-14.	95, 994	. 85172	. 79633	. 71748	. 60855
15-19.	95, 532	. 80018	. 72095	. 61149	. 46434
20-24.	94,795	. 72256	. 61625	. 46795	. 29688
25-29	93, 792	. 62284	. 47295	. 30015	. 14639
30-34	92,537	. 47937	. 30422	. 14837	. 05083
35-39.	91, 148	. 30888	. 15063	. 05161	. 01151
40-44.	89, 656	. 15314	. 05247	. 01170	
45-49-	87,787	. 05358	. 01195		
50-54.	85, 287	. 01230			
55-59.	81,760				
60-64.	76, 443				
65-69.	68, 874				
70-74--	58,417				
75-79.	44,359				
80-84.	28,152				
85-89	13,730				
90-94	4,704				
95-99.	1,049	---------	-		

[^6]by using 17.98 as the divisor, the expected numbers are estimated on the basis of $r=-.0025$. Obviously, once the number of survivors has been computed, a simple procedure in itself, as many different r values as desired may be used and corresponding population estimates immediately obtained.

IV

Based on a zero true rate of natural increase, the white population of the United States was estimated by this method as $139,273,000$ in

Figure 1.
1990. By the direct method, namely, using the survival factors by 5 -year age periods (L_{x+5} / L_{x}) and gradually building up the younger age groups, ${ }^{10}$ an estimate of $137,844,000$ white persons was obtained for 1990 (fig. 1). The stabilized method gave an overestimate of about 1 percent when compared with the estimate by the direct method. As seen from table 4, the percentage differences for 1980

[^7]and 1985 are practically of no significance: Even the estimate for 1975 is only 1 percent short of that obtained by the direct method. ${ }^{11}$

To check further the accuracy of such estimates, comparisons between this and the direct method were made for Tennessee, representing potentially a rapidly growing population, and Illinois, representing a potentially declining population. In 1930 Tennessee registered a net reproduction rate of 1.33 , which corresponds to a true yearly rate of increase of about .0100 (see table 2); in 1930 Illinois

Figuri 2.
had a net reproduction rate of .90 , corresponding to a true yearly rate of increase of $-.00375 .{ }^{12}$ There were also computed by the two methods estimates for the Negro population, assuming a true zero rate of growth and the Negro mortality rates of 1929-1931 (fig. 2).

Apparently the greatest discrepancies (table 4) were found in the estimates of the Negro population, and these were due to no fault of

[^8]the method, but to the inadequacy of the basic Negro population data. ${ }^{13}$ All other discrepancies seemingly fluctuate around 1 percent.

v

It should be reemphasized that the main purpose of this method is to supply a procedure by which reliable population forecasts may be obtained with a minimum of effort. Once such estimates are obtained for the total population, one can, of course, without difficulty compute estimates for the various age groups by applying to the totals the percental age distribution of the corresponding stabilized population. It is preferable to make such estimates for age groups larger than 5 -year age intervals. Total population estimates computed by this method are given in table 5 for the white and Negro populations in the United States assuming different r values in combination with different life tables. Similar estimates can be calculated for any State in the Union or for any particular population class, either by postulating certain r values or by taking the actual ones. ${ }^{14}$

Table 4.-Comparison of population estimates by the stabilized and direct methods ${ }^{1}$

Population class	Net reproduction rate (R_{0})	True rate of increase (r)	Year	Estimated populations (in thousands)		Percentage difference
				Method		
				Direct	Stabilized	
(1)	(2)	(3)	(4)	(5)	(6)	(7) $=(6):(5)$
U. S. white...	1.00	0.0000	1975	136, 541	135, 159	-1.0
Do..........	1.00	0.0000	1980	137, 260	136, 833	-0.3
Do...-	1.00	0.0000	1985	137, 682	138, 257	+0.4
Do-.--...---------	1.00	0.0000	1990	137,844	139, 273	+1.0
Tennessee..	1.33	0.0100	1975	3,882	3,805	-2.0
Do.-	1.33	0.0100	1980	4,102	4,045	-1.4
Do.-	1.33	0.0100	1985	4,326	4,288	-0.9
Do.	1.33	0.0100	1990	4,556	4,528	-0.6
nlinots	. 90	-0.0375	1975	7,758	7,689	-0.9
Do.	. 90	-0.0375	1980	7, 632	7,606	-0.4
Do.-	. 90	-0.0375	1985 1980	7,495 7,351	7,493	0.0 +0.2
U. 8. Negro	1.00	0.0000	1975	14,368	13,818	-3.8
U. ${ }^{\text {D }}$ No.-.-.	1.00	0.0000	1980	14, 431	13, 917	-3.6
Do.	1.00	0.0000	1985	14, 474	13, 995	-3. 3
D0.-	1.00	0.0000	1990	14,502	14,041	-3.2

${ }^{1}$ The net reproduction rates for Tennessee and Illinois (col. 2) were taken from Karpinos (6). The corresponding r 's (col. 3) are based on table 2 of this paper. The r for Illinois was interpolated on an arithmetic hasis as the midvalue of $r-.0025$ and $r-.0 c 50$. All estimates are based on the mortality rates of 1929-31.

[^9]The first step in this procedure is to compute the survivors of the given population on the basis of the desired life table. In computing the survivors for 1975, taking 1930 as the starting point, L_{x+45} / L_{x} is used; for $1980 L_{x+50} / L_{x}$ is used, L_{x+55} / L_{x} for 1985, and L_{x+60} / L_{x} for 1990 . The calculated number of survivors is then divided by the proportion of the total population that these survivors constitute in the respective stabilized populations.

Table 5.-Population estimates in the United States in 1975, assuming different true rates of growth and different mortality rates

Assumed mortality rates ${ }^{1}$		Assumed true rates of growth (r per 1,000)		Projected populations, $1975{ }^{1}$ (in millions)		
(1)	(2)	(3)	(4)	(5)	(6)	(7)
White	Negro	White	Negro	White	Negro	Total
WLT	NLT	2.5	2.5	145.7	15.4	161.1
WLT	NLT	0.0	0.0	136.5	14.4	150.9
WLT	NLT	0.0	2.5	136.5	15.4	151.9
WLT	NLT	-2. 5	0.0	128.3	14.4	142.7
WLT	NLT	-2.5	-2.5	128.3	13.4	141.7
WLT	WLT	2.5	2.5	145.7	17.9	163.6
WLT	WLT	0.0	0.0	136.5	16.8	153.3
WLT	WLT	0.0	2.5	136.5	17.9	154.4
WLT	WLT	-2.5	0.0	128.3	16.8	145. 1
WLT	WLT	-2.5	-2.5	128.3	15.8	144.1
HLT	WLT	2.5	2.5	154.4	17.9	172.3
HLT	WLT	0.0	0.0	145.0	16.8	161.8
HLT	WLT	0.0	2.5	145.0	17.9	162.9
HLT	WL'T	-2.5	0.0	136.5	16.8	153.3
HLT	WLT	-2.5	-2.5	136.5	15.8	152.3

${ }^{1}$ WLT and NLT indicate the White and Negro life tables as of 1929-31. HLT stands for the hypothetical life table. The data are from Karpinos (3).

The method assumes a constancy of fertility and mortality. This shortcoming is obviously overcome by the fact that as many estimates as desired may be obtained by assuming different r values and different mortality rates. Concretely, suppose that the white population in the United States will increase for a certain period at a zero r, then at $r=-.0025$, and later at $r=-.0050$. The first r value would give an estimate of 135 million persons for 1975 ; the second r value would estimate the population as 127 million for the same year; and the third would bring down the estimate to 120 million. It may thus be very reliably expected, on the basis of these estimates, that the white population of the United States would be about 127 million persons. This would obviously be equivalent to a continuous zero r. Moreover, other estimates based on the hypothetical life table may be added, as was partially done in table 5 , and from all these estimates either one estimate may be obtained or the various estimates listed separately, the assumed r 's and mortality being indicated.
The other presupposition, absence of migration, which is involved in determining the stabilized age compositions, seems to be of no great
importance as a contributing factor to the future growth of the population of the United States as a whole. Migration, however, is unquestionably significant in estimating the population of individual States. Yet such estimates, without taking migration into account, so easily

Figure 3A.-Estimated birthsand deaths of the white population in the United States (1935-90) assuming a stationary rate of growth and the mortality rates of 1930.

Figuri 3B.-Estimated birth and death rates of the white population in the United States (1935-90) assuming a stationary rate of growth and the mortality rates of 1930.
obtained, appear to be of marked interest even for States and cities, since they reveal immediately the size and structure of the population which may be expected in a State or city or for a particular population group if the increase continues according to a given or assigned
fertility and mortality. Such estimates add meaning to the indices of reproductivity. Furthermore, inter- and intrastate migrations are of such undetermined character that, no matter what assumptions are made, and these have to be limited, migration estimates appear to be of questionable value, especially from the point of view of long-range forecasts.

At the same time this method may be easily used for predicting the expected number of births and deaths under the assumed or assigned fertility and mortality. For example, the expected number of the white population for the United States based on a zero true rate of increase was estimated for 1975 as 136.5 million persons. The corresponding birth and death rates, given in table 2, were both computed as 16.39 . Evidently, about 2.2 million ($136.5 \times .1639$) births

Figure 4A.-Estimated birth and death rates of the Negro population in the United States (1935-90) assuming a stationary rate of growth and the mortality rates of 1930.
may be expected annually and, of course, the same number of deaths for a stationary population (see fig. 3). A true rate of increase of -2.5 per 1,000 would bring the estimated white population of the United States in 1975 to about 128.3 million persons (table 5), and the annual number of births and deaths to 1.9 and 2.2 millions, respectively, the birth rate for such a true rate of increase being 14.97 and the death rate 17.47 (table 2). On the basis of a zero true rate of increase on the hypothetical life table, the estimated white population would be about 145 millions, and the expected annual births and deaths 2.1 millions. Obviously, even with lower mortality an annual minimum of about 2 million births would be required to keep the white population in the United States from ultimate decline. With the existing mortality rate, about 300 thousand births (14.4 million $\times .2063$; see tables 2 and 5) among Negro population would be needed annually
to preclude a potential decline in that group (see fig. 4), and about 275 thousand births, assuming that the mortality of the Negro will fall to the level of the mortality of the whites as of 1930 (16.8 million \times .1639).
In the same manner, the expected number of births and deaths for any population can be computed, based on any desired fertility and mortality. It is of specific significance to the student of population to be able to estimate the number of births and deaths necessary for a given population to maintain its numbers; such estimates should prove a very helpful guide in population analysis.

Figure 4B.-Estimated births and deaths of the Negro population in the United States (1935-90) assuming a stationary rate of growth and the mortality rates of 1930.

REFERENCES

(1) Dublin, L. I., and Lotka, A. J.: On the true rate of natural increase. J. Am. Stat. Assoc., 20: 305-339 (September 1925).
(2) Length of Life. Chapter 11. The Ronald Press, 1936.
(3) Karpinos, Bernard D.: A stationary population. Human Biology, 7: 514538 (December 1935).
(4) The implications of certain population concepts. Social Forces, 14: 214-226 (December 1935).
(5) The length of time required for the stabilization of a population. Am. J. Sociol., 41: 504-513 (January 1936).
(6) - The differential true rates of growth of the white population in the United States and their probable effects on the general growth of the population. Am. J. Sociol., 44: 251-273 (September 1938).
(7) - Net reproduction rates of the white population in cities of 25,000 or more inhabitants in the United States. Population Index, 4: 60-63 (January 1938).
(8) The true growth of the Negro population in the United States.
(9) Lorimer, Frank: Suggestions on population studies for State planning boards. National Resources Committee, 1938.
(10) Lotka, A. J.: The geographic distribution of intrinsic natural increase in the United States, and an examination of the relation between several measures of net reproductivity. J. Am. Stat. Assoc., 31: 273-294 (June 1936). J. Washington Acad. Sci., 16: 505-513 (November 1926).
(12) Reed, Lowell J.: Population growth and forecasts. Annals Am. Acad. Polit. and Soc. Sci., 188: 159-166 (November 1936).
(13) Sharpe, F. R., and Lotka, A. J.: A problem of age distribution. London, Edinburgh, and Dublin Philosophical Mag. and J. Science, Sixth Series (January-June 1911).
(14) Shryock, Henry S.: Population estimates in postcensal years. Annals Am. Acad. Polit. and Soc. Sci., 188: 167-176: (November 1936).
(15) Methods of estimating postcensal populations. Am. J. Pub. Health, 28: 1042-1047 (September 1938).
(16) Whelpton, P. K.: An empirical method of calculating future population. J. Am. Stat. Assoc., 31: 457-473 (September 1936).
(17) Needed population research. Chapter 1. Science Press Printing Co., 1938.

STUDIES OF A FILTER-PASSING INFECTIOUS AGENT ISOLATED FROM TICKS

V. FURTHER ATTEMPTS TO CULTIVATE IN CELL-FREE MEDIA. SUGGESTED CLASSIFICATION ${ }^{1}$

By Herald R. Cox, Associate Bacteriologist, United States Public Health Service

In a previous paper (1) the characteristics of the filter-passing rickettsia-like organism isolated from the Rocky Mountain wood tick, Dermacentor andersoni, were described, and it was shown to be pathogenic for certain animals as well as man (2,3,4). The successful cultivation of this agent in modified Maitland tissue culture was also reported, and its failure to grow in ordinary bacteriological media or to survive beyond the sixth subculture in cell-free media of the type commonly employed for growing bartonellae. In the experiments in which bartonella media were used, the cultures were incubated at 37.5° and $32^{\circ} \mathrm{C}$., temperatures somewhat higher than commonly employed for these organisms.

These tests have, therefore, been repeated to determine (a) if this agent can be maintained in serial passage when incubated at $28^{\circ} \mathrm{C}$., and (b) how long it can survive without transfer at this temperature.

MATERIALS AND METHODS

Two types of media were employed: (a) Noguchi's leptospira medium (5) prepared with rabbit serum, ${ }^{2}$ and (b) the same medium containing, in addition, 0.2 percent of each of the following sugars: Glucose, lactose, sucrose, maltose, and inulin.

[^10]Two infected guinea pig spleens were used to prepare separate 5 -percent tissue suspensions in Tyrode's solution. Each suspension was centrifuged ($2,500 \mathrm{r} . \mathrm{p} . \mathrm{m}$. for 20 minutes) and the supernatant portion passed through a new Berkefeld N filter. Twelve tubes of each type of medium each received 1 cubic centimeter of one filtrate and an equal number each received 1 cubic centimeter of the other. Filtrates were used to eliminate the possibility of cells being present in the inoculum. The tubes were stoppered with cotton and incubated at $28^{\circ} \mathrm{C}$.
In the attempt to maintain the infectious agent in serial passage, 2 series of transfers were initiated, one from a tube without sugars (experiment 1) and the other from a tube with sugars (experiment 2). The successive subcultures were transferred every 8 to 14 days. The dilution factor was approximately 1 to 4 . At each subtransfer Giemsa stained smears were prepared and examined for visible organisms, and a titration test was carried out in guinea pigs to determine the end point of infectivity of the culture material. For the latter tests 1 cubic centimeter amounts of the undiluted culture material and of progressive tenfold dilutions were injected intraperitoneally. These dilutions were made in a mixture containing equal volumes of filtered human ascitic fluid and Tyrode's solution. All animals that survived were later tested for immunity.

In the tests to determine longevity a filtrate-inoculated tube without sugars (experiment 3) and one with sugars (experiment 4) were selected at irregular intervals and tested by smears and by guinea pig inoculation of each culture and its decimal dilutions in the same manner as that described for experiments 1 and 2.

EXPERIMENTAL DATA

Experiments to maintain the infectious agent in serial transfer.There was no apparent growth of the infectious agent in either of the original culture tubes inoculated with the spleen filtrates or in any of the transfer tubes. Furthermore, no organisms were ever observed in the Giemsa stained smears. ${ }^{3}$

Tables 1 and 2 present the data pertaining to the guinea pig inoculation tests made with the successive subcultures in experiments 1 and 2, respectively. These data suggest that multiplication of the infectious agent did not occur since there was a gradual increase in the incubation period in inoculated guinea pigs and a gradual decrease in the infectivity of the inocula through 6 subcultures. Material from the seventh and eighth subcultures caused no reaction.

[^11]Further evidence of absence of multiplication is afforded by the fact that the infectious agent did not survive without a decrease in the infective titer. Thus, in both experiments the Berkefeld filtrates used as inocula were infectious in a dilution of $1: 100,000$, while the infective end point was reached in the sixth subculture tubes, representing a dilution of approximately $1: 16,000$ in terms of the original inocula. If the infectious agent had survived without loss the subculture tubes of the seventh, and possibly even the eighth, transfer would have been infectious.

Table 1.-Experiment 1: Test data showing lack of multiplication of the infectious agent in leptospira medium without sugar. (Cultures initiated with Berkefeld N filtrate of suspension of spleen tissue from guinea pig A26157)

${ }^{1}$ N. I. = animal failed to react and found nonimmune on subsequent test.
Table 2.-Experiment 2: Test data showing lack of multiplication of the infectious agent in leptospira medium containing glucose, lactose, sucrose, maltose and inulin. (Cultures initiated with Berkefeld N filtrate of suspension of spleen tissue from guinea pig A26158.)

Material titrated	Date	Dayonwhichtrans-ferred	Dilution factor in terms of original inoculum	Incubation period, in days, of guinea pigs injected with undiluted and decimal dilutions of the initial inoculum and of the serial subcultures in leptospira medium							
				Dilutions tested							
				10°	101	10^{2}	103	104	$10{ }^{5}$	10^{6}	10^{7}
Berkefeld N filtrate inoculum	Dec. 16, 1938	11th		3,3, 3	7	5	6	5	12	${ }^{1}$ N. I.	N. I.
Original leptospira culture				3,3,3							
First subculture...	Jan. 5, 1939	9 9th	1:16	6	6	9	9	11	N. I.	N. I.	-...-
Second subculture.-	Jan. 13, 1939	8th	1:64	7	9	10	9	N.I.	N. I .		
Third subculture.--	Jan. 23, 1939	10th	1:256		13	10	N.I.	N. I .			
Fourth subculture.-	Feb. 2, 1939	8th	1:1,024	8	10	11	N.I.	N. I .			
Fifth subculture---	Feb. 10, 1939	8th	1:4,096	10	11	10	N.I.	N. I .			
Sixth subculture...-	Feb. 20, 1939	10th	1:16,384	15	N. I.	N.I.	N.I.	N.I.			
Seventh subculture-	Mar. 2, 1839	10th	1:65,536	N. I.	N.	N.I.	N.I.				
Eighth subculture.-	Mar. 16, 1939	14th	1:262,144	N.I.	N.I.	N. I.	N.I.				

[^12]These results were substantiated by experiments in which 0.5 cubic centimeters of the undiluted leptospira subcultures of the fourth, fifth, seventh, and eighth transfers of both series were inoculated into duplicate tissue cultures of the modified Maitland or Rivers type. ${ }^{4}$ In both tests typical rickettsia-like organisms were found in the tissue cultures representing the fourth and fifth leptospira media transfers, but not in those representing the seventh and eighth passages.

Length of survival without transfer in cell-free media.-Tables 3 and 4 present the data pertaining to the animal inoculation tests made in experiments 3 and 4. These data show that in each of the experiments the infectious agent survived without transfer for at least 109 days in cell-free media without appreciable loss of infective titer. No evidence was obtained that the infectious agent was multiplying in the cell-free medium. The only apparent change in the culture medium was a concentration due to evaporation to approximately one-half the original volume. No evidence of growth was observed in any of the tubes, nor was it possible at any time to demonstrate the organism in the Giemsa-stained smears prepared from the culture media.

discussion

The results of these experiments confirm the work previously reported (1), indicating that the rickettsia-like agent being studied cannot be cultivated and carried in serial passage in cell-free media commonly employed for bartonellae.

Table 3.-Experiment 8: Data showing survival of the infectious agent in nontransferred cultures of leptospira medium without sugar. (Cultures initiated with Berkefeld N filtrate of suspension of spleen tissue from guinea pig A26157)

Material titrated	Date	Day tested	Incubation period, in days, of guinea pigs injected with undiluted and decimal dilutions of the initial inoculum and of the leptospira medium cultures							
			Dilutions tested							
			10°	10^{1}	10^{2}	10^{3}	104	10^{8}	10^{6}	10^{\prime}
Berkefeld N filtrate inoculum.	Dec. 16, 1938		3, 5, 6	7	6	8	${ }^{8}$	${ }^{10}$	${ }^{1} \mathrm{~N} . \mathrm{I}$.	N. I.
Culture 1..............	Dec. 27, 1938	11th	3, 5, 5	6	8	10	N. I.	N. I.	N.I.	
Culture 2	Jan. 5, 1939	20 20h	5	5	8	10	N. I.	N.I.	N. I.	
Culture 3.	Jan. 13, 1939	288 2rh	7	8	${ }^{8}$	8		N.I.		
Culture 4	Feb. 2, 1939	48th	6 7	8	118	12 9	N. 10	N.I.	N. I.	
Culture 5-.....-.-.-	Feb. 20, 1939	66th	7	8	8 10	-9	N. ${ }^{10}$	N.I.		
Culture 6-...........	Mar. 3, 1939 Apr. 4, 1939	77th	${ }^{6}$	8	12	14	N. 15	N. I .		

[^13]Table 4.-Experiment 4: Data showing survival of the infectious agent in nontransferred cultures of leptospira medium containing glucose, lactose, sucrose, maltose, and inulin. (Cultures initiated with Berkefeld N filtrate of suspension of spleen tissue from guinea pig A26158)

Material titrated	Date	Day tested	Incubation period, in days, of guinea pigs injected with undiluted and decimal dilutions of the initial inoculum and of the leptospira medium cultures							
			Dilutions tested							
			10°	10^{1}	108	10^{3}	104	108	10°	10^{7}
Berkefeld N filtrate inoculum.	Dec. 16, 1938		$3,3,3$6546656	76756679	597	69	5	12	${ }^{1} \mathrm{~N} .1$.	N. I.
Culture 1-..-----..--	Dec. 27, 1938	11th					11	N. I.	N. I.	
Culture 2-	Jan. 5, 1939	20th			77	10	13	N. I .		N. I.
Culture 3.	Jan. 13, 1939	28th				9	12	14	N. I.	---..-
Culture 4-	Feb. 2, 1939	48th			9	11	10	15	N. I.	
Culture 5-----......-	Feb. 20, 1939	$\begin{aligned} & \text { 66th } \\ & 77 \mathrm{th} \end{aligned}$			1079	N. I.	N.	N.I.	N.I.	--......
Culture 6............	Mar. 4, 1939					10	12	N.I.	N.I.	--....-
Culture 7.-...-------	Apr. 4, 1939	109th			9					-------

${ }^{1} \mathrm{~N} . \mathrm{I} .=$ animal failed to react and found nonimmune on subsequent test.
Its ability to pass filters that ordinarily retain bacteria, bartonellae, and rickettsiae, and to survive for relatively long periods in cell-free leptospira media and its failure to produce agglutinins for Proteus strains of bacteria would, perhaps, justify the placing of this organism in a new genus. However, it is deemed most suitable to classify it tentatively with the rickettsiae. Since the outstanding characteristic differentiating this agent from the known pathogenic rickettsiae is its property of filterability, the name Rickettsia diaporica ${ }^{5}$ (diaporica is derived from the Greek word and means having the property or ability to pass through) is proposed.

CONCLUSION

The results of these experiments confirm the work previously reported (1), indicating that the rickettsia-like agent being studied cannot be cultivated and carried in serial passage in cell-free media commonly employed for the growth of bartonellae.

SUMMARY

Further attempts to cultivate the filter-passing infectious agent isolated from the Rocky Mountain wood tick, Dermacentor andersoni, in cell-free leptospira media have failed. It survived in serial passage through six subcultures, but was not demonstrated in later subcultures. In culture tubes kept at $28^{\circ} \mathrm{C}$. it survived for at least 109 days with no appreciable loss of infective titer. The name Rickettsia diaporica is proposed for this organism.

[^14]
REFERENCES

(1) Cox, Herald R.: A filter-passing infectious agent isolated from ticks. III. Description of organism and cultivation experiments. Pub. Health Rep., 53: 2270-2276 (Dec. 30, 1938).
(2) Davis, Gordon E., and Cox, Herald R.: A filter-passing infectious agent isolated from ticks. I. Isolation from Dermacentor andersoni, reactions in animals, and filtration experiments. Pub. Health Rep., 53: 2259-2267 (Dec. 30, 1938).
(8) Parker, R. R., and Davis, Gordon E.: A filter-passing infectious agent isolated from ticks. II. Transmission by Dermacentor andersoni. Pub. Health Rep., 53: 2267-2270 (Dec. 30, 1938).
(4) Dyer, R. E.: A filter-passing infectious agent isolated from ticks. IV. Human infection. Pub. Health Rep., 53: 2277-2282 (Dec. 30, 1938).
(5) Noguchi, Hideyo, and Battistini, Telemaco, S.: Etiology of Oroya fever. I. Cultivation of Bartonella bacilliformis. J. Exp. Med., 43: 851 (1926).

THE INFLUENCE OF TRANSPLANTED NORMAL TISSUE ON BREAST CANCER RATIOS IN MICE*

By John J. Bittner, Research Fellow, National Cancer Institute, United States Public Health Service, and Research Associate, Jackson Memorial Laboratory, Bar Harbor, Maine

In earlier publications (1,2) it was mentioned that the incidence of breast cancer for a few BAF_{1} and BAF_{2} hybrid females which had been inoculated with normal tissue from cancer stock animals was higher than was observed in the control groups. Owing to these observations the inoculated mice were omitted from tabulations of these classes in later papers $(3,4)$.

Grafts of splenic, thymic, and lactating mammary tissue were used as inocula, and were injected by means of a trochar. The spleens and thymus glands were from " A " high cancer stock females which averaged 4 to 5 weeks in age. The spleens were cut into five approximately equal parts and the thymus divided by lobes before being injected. The donors of the mammary glands were lactating " A " stock females which had cast their first or second litters.

The age of the mice when they were inoculated varied. Some were 4 to 5 weeks old and others had had their first litters. As far as could be determined with the number used there was little or no difference in the results. The tissues were inoculated into two groups of " B " (C57 black) stock females, one nursed by C57 black females and the other nursed by females from high tumor stocks. The BAF_{1} mice were obtained by mating " B " strain females to "A" stock males and the young nursed their mothers. The offspring were mated inter se to obtain the BAF_{2} hybrids. All the injected mice were used as breeders.

In table 1 the different classes of mice are tabulated according to the tissue inoculated, and in table 2 all of the inoculated animals of each class are grouped and compared with the control animals. Con-

[^15]sidering the stocks from the standpoint of the tissue inoculated, it will be noted that, with the exception of the " B " stock mice nursed by high tumor mothers and receiving mammary tissue grafts, there is little variation in the observed tumor percentages. The breast tumor ages, based on very small numbers, are of little significance.

Table 1.-Results obtained following the transplantation of normal tissue from potentially cancerous individuals into low tumor stock mice

Stock	Nursed by	Tissue inoculated	$\underset{\text { Ner }}{\text { Num- }}$	Percent cancer	Average age, in months	
					Can- cer- ous	Noncancer ous
B.	Low Ca. $\%$	Mammary	13	0		15.7
B	High Ca.	--.-do..........-...	8	37.5	13.9	19.2
BAF ${ }_{1}$	Low Ca. $\%$	do.	14	21.5	15.0	16.4
B	do	Thymus.	13	0		14.9
B	High Ca. $\%$.-.do.	11	9.1	17.5	18.7
B	Low Ca.	Spleen	22	4.5	17.7	14.9
B	Migh Ca.	--..do.	18	5.6	10.3	16.1
BAF'	Low Ca. $\%$	--.-do.	32	21.9	15. 6	20.2
BAF_{2}.	--..do.	---. do........-...	11	18.2	16.0	18.2

Table 2.-Comparison of data in animals inoculated with normal tissue and in groups serving as controls. All were used as breeders

Stock	Nursed by	Class	$\underset{\text { Ner }}{\text { Num- }}$	Percent cancer	Average age, in months	
					Cancerous	Non-cancerous
B.	Low Ca. $\%$	Inoculated.	48	2.1	17.7	15.1
B	High Ca. ${ }^{\text {--. }}$.-.-do......	37	13.5	13.9	17.4
BAF_{1-}	Low Ca. 9	--.-do.	46	21.7	15. 4	19.0
BAF_{2}	do	do.	11	18.2	16.0	18.2
B	-do	Controls	586	. 5	21.4	20.8
B	High Ca. ${ }^{+}$	--.--do.-.	104	10.6	13.2	16.6
BAF_{1}	Low Ca. $\%$	---.-do	108	1.9	18.0	21.1
BAF_{2}	----do..	--..do	112	0		20.7

One "B" strain female developed breast cancer in the groups inoculated with grafts from " A " stock mice (table 2). The percentage was 2.1 for the 48 mice used. The control breast tumor ratio for this group taken from Little, Murray, and Cloudman (5) was 0.5 percent. The number of fostered "B" stock females receiving grafts was 37 , of which 13.5 percent developed breast cancer as compared with a ratio of 10.6 percent for the control fostered animals. The breast tumor ratios for the inoculated and control BAF_{1} hybrid mice were 21.7 percent and 1.9 percent respectively. Similar data for the BAF_{2} hybrids were 18.2 percent and 0 percent.

Seventeen BAF_{2} mice descended from the inoculated BAF_{1} females were observed to have a breast tumor incidence of 29.4 percent
(± 7.7). This ratio was 11.2 percent (± 11.0) greater than was recorded for the inoculated mice of this generation.

The differences observed for the inoculated and control mice of the respective " B " stock classes were not mathematically significant (table 3). The degree of significance between the inoculated fostered and the inoculated control "B" stock mice was $2.9 \times$ P. E., and for the control unfostered and the control fostered series it was $5.1 \times$ P. E. The difference in the observed breast tumor ratios between the injected and noninjected BAF_{1} mice was 19.8 percent (± 4.2), or $4.7 \times$ P. E. As only $11 \mathrm{BAF}_{2}$ mice were inoculated, the recorded difference of 18.2 percent (± 7.8) was not great enough to be significant. BAF_{2} females descended from inoculated BAF_{1} females gave an incidence 29.4 percent ($3.8 \times$ P. E.) greater than the control BAF_{2} mice. There were $28 \mathrm{BAF}_{2}$ females either incculated or descended from inoculated mothers having a tumor ratio of 25 percent (± 5.4). The degree of significance was $4.6 \times \mathrm{P}$. E. when this percentage was compared with that observed for the control class.

Table 3.-Comparison of ratios obtained in the control and inoculated groups, and degree of significance between ratios

Ratio	Stock	Nursed by	Class	$\left.\begin{array}{\|c\|} \hline \text { Num } \\ \text { ber } \end{array} \right\rvert\,$	Percent cancer	Difference between ratios
		Low Ca. $9 .$.	Inoculated--	$\begin{array}{r}48 \\ 586 \\ \hline\end{array}$	$\begin{array}{r} 2.1 \pm 1.4 \\ .5 \pm .2 \end{array}$	
2----		High Ca. ${ }^{\text {a }}$	Inoculated:-	37	13. 5 ± 3.8	2 and $4=10.1$ percent ± 2.0 or
		do	Controls...-	104	10.6土2.0	
	BAF_{1}	Low Ca. $9 . .$.	Inoculated_-	${ }^{46}$	21.7 ± 4.1 1.9	$5{ }^{5}$ and $6=19.8$ percent ± 4.2 or
	BAF1		Controls----	108	$1.9 \pm .8$ 18.2 ± 7.8	
8	BAF	--.-do.-.-.---	Controls...-	112	0.0	$2.3 \times$ P. E.

DISCUSSION

In the etiology of inherited breast cancer in " A " and " B " stock mice and their hybrids it has been assumed that three "influences" must be present (3, 4):
(a) The breast cancer producing influence transmitted in the milk of high breast tumor stock females.
(b) An inherited susceptibility.
(c) A hormonal stimulation.

In these studies it has been observed that very few animals develop breast tumors if one or more of the "influences" are absent. If tumors develop in such animals it is unusual to find that they are transmitted to their progeny.

Experiments determining the breast tumor incidence in the "B", or C57 black, stock mice following foster nursing or forced breeding (the functional test as described by Bagg) have demonstrated subline
variations within this strain (4, 6, 7, 8). In this work the difference observed between the " B " stock mice nursed by low cancer mothers and those nursed by high cancer stock females may be explained on this basis. No significant variation was recorded between the inoculated and control mice of these respective classes. Thus, the few breast tumors that developed in fostered "B" stock mice which had been inoculated with normal tissue may have been influenced by the effects of foster nursing.

In the inoculated BAF_{1} and the BAF_{2} mice which were injected or were descended from inoculated BAF_{1} females, ratios were observed which were mathematically significant as compared with those observed for the control groups. According to our theory of breast cancer development, the BAF_{1} mice would lack only the "influence" which is generally obtained from nursing high tumor stock females. First generation mice should receive the breast cancer susceptibility complex from their "A" stock fathers. Seventy-five percent of the BAF_{2} should theoretically need only the influence of nursing, while the others should lack, in addition, the susceptibility constitution. When normal tissue from 4- to 5 -week-old females of the " A " high tumor stock was transplanted into these hybrid animals, it is probable that the so-called "breast cancer producing influence" was present in the grafted tissue in a sufficient quantity to initiate the development of breast cancer in some mice in the presence of the other "influences." This might indicate that this influence is present not only in the milk of potentially cancerous stock females but is probably present in many, if not all, of the tissues of such individuals. The reason why it is not transferred in utero is not apparent.

BAF $_{1}$ females receiving the "breast cancer producing influence" by way of transplanted tissues are able to transmit the influence, by nursing, to some of their BAF_{2} progeny. The incidence of breast cancer among the progeny is not as high, however, as when the F_{1} females were nursed by high tumor stock mothers. Comparable observations were obtained for the progeny of " A " stock females which nursed their "A" stock mothers for less than 24 hours before being fostered to low tumor stock females (9), that is, the progeny of the fostered "A" stock mice which developed breast cancer gave a lower incidence than did the control animals.

Six "B" stock females in the inoculated groups developed mammary carcinoma. One had been nursed by its low cancer stock mother and the others had been transferred to high cancer stock females. Among these five were two pairs of sisters and by chance three of the five, including one from each pair of sisters, were among the eight inoculated with mammary tissue.

The grafts were placed in the right axillary region by means of a trochar. In the inoculated mice 20 spontaneous tumors were observed in 18 animals. Of this number 5 , or 25 percent, of the growths developed in the right axillary region. Three were found in animals injected with mammary tissue. None of the nine tumor mice which had received splenic tissue had growths appearing near the injection site and in several animals the grafts were recovered at autopsy.

SUMMARY

By the inoculation of normal tissue from young high cancer stock female mice, an influence may be transmitted which produces results similar to those of the "breast cancer producing influence" normally obtained in the milk while nursing.

REFERENCES

(1) Bittner, J. J.: Breast cancer and mother's milk: Relation of nursing to the theory of extrachromosomal causation of breast cancer in mice-a preliminary report. J. Heredity, 28: 363 (1937).
(2) - Relation of nursing to the extrachromosomal theory of breast cancer in mice. Am. J. Cancer, 35: 90 (1939).
(3) ——Breast cancer in breeding and virgin "A" and "B" stock females and their hybrids. Pub. Health Rep., 54: 1113 (1939).
(4) - The possible method of transmission of breast cancer susceptibility in mice. Am. J. Cancer. In press.
(5) Little, C. C., Murray, W. S. and Cloudman, A. M.: The genetics of nonepithelial tumor formation in mice. Am. J. Cancer, 36: 431 (1939).
(6) Andervont, H. B., and McEleney, W. J.: The influence of nonbreeding and foster nursing upon the occurrence of spontaneous breast tumors in strain $\mathrm{C}_{3} \mathrm{H}$ mice. Pub. Health Rep., 53: 777 (1938).
(7) Bagg, H. J., and Jackson, J.: A cancer line in mice derived from low tumor strain (C57 black). Presented at Richmond meeting of Am. Assoc. Cancer Res., April 6, 1939.
(8) Little, C. C., and Pearsons, J.: The results of a "functional test" in a strain of mice (C57 black) low in breast tumors. In press.
(9) Bittner, J. J.: Breast cancer and the pedigree relationship of fostered "A" stock mice. Pub. Health Rep., 54: 1642 (1939).

DEATHS DURING WEEK ENDED SEPTEMBER 16, 1939

[From the Weekly Health Index, issued by the Bureau of the Census, Department of Commerce]

	Week ended Sept. 16, 1939	Corresponding week, 1938
Data from 88 large cities of the United States:		7,480
Total deaths	17,437	
Average for 3 prior years. Total deaths, first 37 weeks of year	308, 697	301,889
Deaths under 1 year of age..........	458	529
Average for 3 prior years.	${ }^{1} 509$	
Deaths under 1 year of age, first 37 weeks of year	18,605	, 581
Data from industrial insurance companies:	66, 702, 292	68, 288, 474
Policies in force	11,008	11, 124
Number of death claims ${ }^{\text {Death clatms per } 1,000}$ policies in force, annual rate	11,8.6	, 8.8
Death claims per 1,000 policies, first 37 weeks of year, annual rate	10.2	10.2

[^16]
PREVALENCE OF DISEASE

No health department, State or local, can effectively prevent or control discase without knowledge of when, where, and under what conditions cases are occurring

UNITED STATES

CURRENT WEEKLY STATE REPORTS

These reports are preliminary, and the figures are subject to change when later returns are received by the State health officers.
In these and the following tables, a zero (0) indicates a positive report and has the same significance as any other figure, while leaders (...) represent no report, with the implication that cases or deaths may have occurred but were not reported to the State health officer.

Cases of certain diseases reported by telegraph by State health officers for the week ended September 23, 1939, rates per 100,000 population (annual basis), and comparison with corresponding week of 1938 and 5-year median

[^17]Cases of certain diseases reported by telegraph by State health officers for the week ended September 23, 1939, rates per 100,000 population (annual basis), and comparison with corresponding week of 1938 and 5 -year median-Continued

See footnotes at end of table.

Cases of certain diseases reported by telegraph by State health officers for the week ended September 23, 1939, rates per 100,000 population (annual basis), and comparison with corresponding week of 1938 and 5 -year median-Continued

See footnotes at end of table.

Cases of certain diseases reported by telegraph by State health officers for the week ended September 23, 1939, rates per 100,000 population (annual basis), and comparison with corresponding week of 1938 and 5-year median-Continued

See footnotes at end of table.

Cases of certain diseases reported by telegraph by State health officers for the week ended September 23, 1939, rates per 100,000 population (annual basis), and comparison with corresponding week of 1938 and 5 -year median-Continued

Division and State	Smallpox				Typhoid and paratyphoid tever				Whooping cough		
	Sept. 23, 1839, rate	Sept. 23, cases	Sept. 24, cases	$\begin{gathered} \text { 1934- } \\ 38, \\ \text { me- } \\ \text { dian } \end{gathered}$	Sept. 23, rate	Sept. 23, 1939, cases	Sept. 24, 1938,	$\begin{gathered} 1934- \\ 38, \\ \text { me- } \\ \text { dian } \end{gathered}$	Sept. 23, 1939, rate	Sept. 23. 1939, cases	Sept. 24. cases cases
Paciric											
Washington..									46	15	
Oregon....	0	0	8	0	35	7	3	4	0	0	15
California	2	2	3	1	7	8	13	18	93	113	175
Total	1	31	42	42	18	451	444	600	96	2,387	3,140
38 weeks	5	4,794	12,894	6, 233	10	9,662	10, 886	11, 192	148	139, 425	161,455

[^18]
SUMMARY OF MONTHLY REPORTS FROM STATES

The following summary of cases reported monthly by States is published weekly and covers only those Btates from which reports are received during the current week.

State	Diph theria	Influenza	Malaria	Mear	Meningit is, menin gncoccus	Pellagra	Polio-myelitis	Scarlet. fever	$\underset{\text { pox }}{\text { Small- }}$	Typhoid and paraty phoid fever
July 1989										
Arizona...-.-.....--	4	59		13	0	4	9	13	5	9
Delaware.				12	1		0	11	0	2
West Virginia	20	31		21	3	10	2	60	1	72
August 1989										
Alabama-.-.-....--	70	61	1,047	20	5	29	4	76	0	69
District of Colum-	15	3		22	0		5	20	0	8
Florida.	14	10	47	9	0	9	8	14	0	12
Georgia............-	121	30	$3 ¢ 3$	26	3	148	12	44	1	107
Kansas...-	24	1	3	20	1	1	6	112	6	21
Louisiana-..........-.	28	32	106	18	0	8	2	27	0	104
Maryland-...-.-.-----	7	1	1	15	3	2	3	47	0	40
Minnespta-........--	21	6	5	92	0		156	83	2	16
Mississippi.....-.-.	90	1, 184	8, 197	183	2	424	2	22	0	45
Montana-.........--	3	24		45	1		0	30	0	11
Nebraska.	10			4	1		8	26	3	3
New Jersey.	9			52	3		52	61	0	28
Ohio-.................-	33	15	${ }^{6}$	73	3		31	230	6	68
Oklahoma-.-.-.----	23	238	275	15	3	13	5	24	5	88
Washington-.-.....-	5	1	1	206	0		4	34	0	13

Summary of monthly reports from States-Continued

July 1939		August 1959-Continued	
Chickenpox: C	Cases	Encephalitis, epidemic or	Cases
Arizona.		lethargic-Continued.	Cases
Delaware	11	Louisiana. Minnesota.	1
Dysentery:		Nebraska.	1
Arizona	63	Ohio	3
West Virginia (bacil-		Washington	33
lary)--	24	German measles:	
German measles:		Alabama	2
Arizona	5	Kansas.-.	$\begin{array}{r}3 \\ 3 \\ \\ \\ \hline\end{array}$
Mumps: Arizona	38	Mary Jandey	24
Delaware	8	Ohio-	5
West Virginia	27	Washington	7
Rabies in animals:		Hookworm disease:	
Delaware...-.-.-.-----	1	Florida---	22
Rocky Mountain spotted		Qeorgia.-	1,228
fever: West Virginia		Louisiana Mississipp	${ }_{966}$
West Virginia----------	2	Mississipp Oklahoma	66
Septic sore throat: West Virginia	7	Impetigo contagios	
Trachoma:		Kansas	- 5
Arizona.	22	Maryland	2
Undulant fever:		Montana.	- 3
Arizona.	7	Ohio	8
West Virginia	2	Oklahoma	8
Whooping eough:		Washington	- 3
Arizona	$\begin{aligned} & 41 \\ & 25 \end{aligned}$	Lead poisoning: Ohio......	5
Delaware	91	Onio.	
West Vir		Leprosy. ${ }_{\text {Georgia }}$	1
August 1939		Louisiana	1
		Mumps:	
Chickenpox:		Alabama Florida	24 12
- District of	5	Georgia	22
Florida	7	Kansas	113
Georgia	5	Louisiana	8
Kansas	18	Maryland	18
Louisiana	1	Mississippi	124
Maryland	20	Montana	$\stackrel{29}{9}$
Minnesota	25	Nebraska-	9 143
Mississippi	120	New Jersey	143
Montana.	19	Ohio-.	205 5
Nebraska	6	Oklahoma	5 39
New Jersey	94	Washington-.-.-....--: Ophthalmia neonatorum:	39
Ohio-...-	107	Ophthalmia neonatorum: Alabama	
Oklahoma Washington	59	Mabamand	- $\quad 1$
Conjunctivitis, infectious:		Minnesota.	
Coneorgia.-.-.-...-...---	8	Mississippi	7
Dengue:		Montana.	
Florida	4	New Jersey	12
Diarrhea:		Puerperal sept	
Kansas (infectious)...--	63	Georgia.- Mississipp	30
Maryland (under 2 years;	63	Mississipp	2
enteritis included)...--	256	Rabies in animals:	
Dysentery:		Alabama	15
Florida (amoebic) --.---	- 7	Florida	1
Georgia (amoebic) -....-	- 5	Louisiana.	3
Gcorgia (bacillary) --.--	16	Minnesota	3
Georgia (unspecified)..-	- 2	Mississippi-...---.-.-.----	45
Louisiana (amoebic)	- 9	Oklahoma	20
Louisiana (bacillary) .--	- 3	Washington	1
Maryland (amocbic).--	- ${ }^{6}$	Rabies in man:	
Maryland (bacillary) --	36	Washington....-...-.-	1
Maryland (unspecified).	26	Rocky Mountain spotted	
Minnesota (amoebic)---	$\begin{array}{r}2 \\ 3 \\ \hline\end{array}$	fercr:	
Minnesota (bacillary)--	1	District of Columbia.-	28
Mississippi (amoebic)--	211	Maryland	
Mississippi (bacillary) -	728 2	Montana....	- 9
Montana (bacillary) ---	2	New Jersey-	- 4
Ohio (amoebic) ---....--	2	Scabies:	
Ohio (bacillary) .-...--	64	Kansas ---	3
Oklahoma (amoebic) --.	1	Montana	10
Oklahoma (bacillary)--	30	Oklahoma	- 1
Washington (amoebic) -	- 1	Septic sore throat:	
Encephalitis, epidemic or		Florida -----.	9
lethargic:		Georgia	5
Alabama---------------	2	Kansas	1
	- 1	Maryland.	14

Septic sore throat-Con.	Cases
Minnesota.	15
Montana.	8
Nebraska.	1
New Jerscy	10
Ohio	11
Oklahoma.	19
Washington	2
Tetanus:	
Alabama.	${ }^{6}$
Florida.	1
Georgia	2
Kansas	4
Louisiana	4
Maryland	2
Montana.	2
New Jersey	1
Ohio...	2
Oklahoma	2
Trachoma:	
Georgia.	- 1
Kansas.	1
Louisiana	5
Maryland	2
Minnesuta	1
Mississippi	8
Montana.	24
Ohio	4
Washington.	1
Trichinosis:	
New Jersey.	2
Tularsemia:	
Alabama	1
Georgia	- 9
Kansas.	- 3
Louisiana	- 2
Maryland.	- 1
Minnesota	- 1
Montana	- 2
Oklahoma	1
Washington.	1
Typhus fever:	
Alabama.	87
District of Columb	- 1
Florida.	26
Georgia	195
Louisiana	16
Maryland	1
Mississippi	12
Undulant fever:	
Alabama.	- 9
Florida.	7
Georgia	14
Kansas.	22
Louisiana	- 6
Maryland	15
Minnesota	11
Mississippl.	,
Montana.	- 1
New Jersey	- 7
Ohio.....-	7
Oklahoma	118
Washington	1
Vincent's infection:	
Florida	4
Kansas	15
Maryland	- ${ }^{6}$
Washington	1
Whooping cough:	
Alabama.	130
District of Columb	162
Florida	41
Georgia	78
Kansas..	88
Louisiana	89
Maryland.	238
Minnesota	173
Mississippi	483
Montana.	42
Nebraska.	89
New Jersey	677
Ohio	870
Oklahoma	8
Washington ..-	8

CASES OF VENEREAL DISEASES REPORTED FOR JULY 1939

These reports are published monthly for the information of health officers in order to furnish current data as to the prevalence of the venereal discases. The fgures are taken from reports received from State and city health officers. They are preliminary and are therefore subject to correction. It is hoped that the publication of these reports will stimulate more complete reporting of these diseases.

Reports from States

| | | |
| :--- | :--- | ---: | ---: | ---: | ---: |

Reports from cities of 200,000 population or over ${ }^{2}$

Akron, Ohio.	38	1.38	30	1.09
Atlanta, Ga	322	10.72	88	2. 93
Baltimore, Md -	685	8. 20	210	2.51
Birmingham, Ala	345	11. 72	62	2.11
Buffalo, N. Y	161	2.02 2.81	144	1.81
Chicago, III.	1,613	2.81 4.40	1,090	. 8.80
Cincinnati, Ohio	1, 153	4. 3.24	1,60	1.27
Cleveland, Ohio	200	2.21	92	. 97

See footnotes at end of table.

Cases of venereal diseases reported for July 1939—Continued
Reports from cities of 200,000 population or over-Continued

	Syphllis		Gonorrhea	
	Cases reported during month	Monthly case rates per 10,000 population	Cases reported during month	Monthly case rates per 10,000 population
Columbus, Ohio.	98	3. 13	27	0.86
Dallas, Tex	232	7.63	110	8. 62
Dayton, Ohio	66 65	4.33 2.16	34	1.53
Denver, Colt, Mich.	552	3.04	245	1.35
Houston, Tex	321	8.96	78	4.97
Indianapolis, Ind	25	. 65	33	. 86
Jersey City, N. J	27	. 83	2	. 06
Los Angeles, Calif	472	3. 10	306 80	2. 01
Louisville, Ky .-	139	4. 10	80	2. 36
Memphis, Tenn	$\begin{array}{r}342 \\ 88 \\ \hline\end{array}$	$\begin{array}{r}11.71 \\ 1.76 \\ \hline\end{array}$	141 70	1.83
Minneapolis, Minn.	-288	1.76 5.64	88	1.94
Newark, N Orleans, La	23	. 47	64	1.31
New York, N. Y	3,455	4.61	1,609	2. 15
Oakland, Calif	38	1.21	27	. 86
Omaha, Nebr--	28 328	1.25	35	1. 57
Pittsburgh, Pa .	328	4.65 243	18	${ }^{2} 26$
Portland, Oreg	${ }_{21}$	2.43 .61	67 33	2.09 .96
Rochester, N. Y	31	1.08 1	29	1.01
St. Paul, Minn	130	1.89	184	2.67
Seattle, Wash	78	2.01	71	1.83
Syracuse, N. Y --	85 480	3.77 7.66	r ${ }^{9} 91$	4.40
W ashington, D. C.	480	7.66	291	4.64

${ }_{1}$ No report for current month.
, No report received from Kansas City, Mo., Milwaukee, Philadelphia, Providence, St. Louis, San Antonio, or Toledo.

WEEKLY REPORTS FROM CITIES

City reports for week ended Sept. 16, 1939
This table summarizes the reports received weekly from a selected list of 140 cities for the purpose of showing a cross section of the current urban incidence of the communicable diseases listed in the table.

State and city	Diphtheria cases	Influenza		Measles cases	Pneumonia deaths	Scarlet fever cases	$\begin{gathered} \text { Small- } \\ \text { pox } \\ \text { cases } \end{gathered}$	Tuber culosis deaths	Typhoid fever cases	Whooping cough cases	$\begin{aligned} & \text { Deaths, } \\ & \text { all, } \\ & \text { causes } \end{aligned}$
		Cases	Deaths								
Data for 90 cities: 5-year average.Current week ${ }^{1}$ -	119 83	83 40	14 8	134 87	309 258	360 224	$\stackrel{2}{0}$	332 324	82 58	1,086	--..-.-.-
Maine: Portland New Hampshire: Concord Manchester Nashua	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		0	2	1	0	0	0	2	1	14
				1	0	0	0	1 0	0	0	14
				0	0	0	0	0		0	
Vermont:											
Barre-.....-----							0	0	0	0	9
Burlington....-	0		0	0	0	0	0	0	0	0	6
Massachusetts:									0	31	
Boston....--.--	0	----	0	0	1	0	0	0	0	6	19
Fall River-...--	0		0	0	0	0	0	1	0	1	34
Springfield....-	0		0	0	8	2	0	2	0	10	46
Rhode Island: ${ }^{\text {a }}$						0	0		0	0	16
Pawtucket...--	0		0	8	2	2	0	1		28	43

[^19]City reports for week ended Sept. 16, 1939-Continued

City reports for week ended Sept. 16, 1939-Continued

City reports for week ended Sept. 16, 19s9-Continued

[^20]
FOREIGN REPORTS

CANADA

Provinces-Communicable diseases-Weeks ended September 2 and 9, 1939.-During the weeks ended September 2 and 9, 1939, cases of certain communicable diseases were reported by the Department of Pensions and National Health of Canada as follows:

Week ended Sept. 2, 1939

Disease	Prince Edward Island	Nova Scotia	New Brunswick	Quebec	Ontario	Manitoba	Sas-katchewan	Alberta	British Columbia	Total
Cerebrospinal meningi-										
tis_...----------------				1	1					2
Chickenpox.---------- --				10	20	3	10	1	11	55
Diphtheria.		1	1	14	2	2	5			25
				5						5
		4	1	48	18	15	4	1	8	97
Mumps				2	12	3			4	21
					5				1	6
Poliomyelitis...-.-.-------		1		7	9	2	1			20
Scarlet fever		3		30	17	6	8	11	2	77
Trachoma							1			12
Tuberculosis.-----.-.-.		4	147	79	35	43	4	2		1214
Typhoid fever and paratyphoid fever			4	16	7	4	8	1	1	36
Whooping cough.-.-.-.-.	--------	29		80	62	11	6	B	19	212

${ }^{1}$ Includes 33 cases delayed reports.
Notr.-No cases of the above diseases were reported in Prince Edward Island during the week ended Sept. 2, 1939.

Week ended Sept. 9, 1939

Disease	Prince Edward Island	Nova Scotia	New Brunswick	$\begin{aligned} & \text { Que- } \\ & \text { bec } \end{aligned}$	$\begin{gathered} \text { Ontar- } \\ \text { io } \end{gathered}$	Manitcba	Sas-katchewan	$\begin{gathered} \text { Alber- } \\ \text { ta } \end{gathered}$	$\begin{gathered} \text { British } \\ \text { Colum- } \\ \text { bia } \end{gathered}$	Total
Cerebrospinal meningitis-				1						1
Chickenpox-..-------.---		2	1	109	35	5	25	8	7	169
Diphtheria		1	3	23	2					58
Influenza.		5		10	22				1	28
Measles..				53	33	13	3		8	105
Mumps..				42	18	5		1	2	68
Pneumonia		2			14				3	19
Poliomyelitis		3		${ }_{36}^{1}$	13	12		9		181
Scarlet fever	2	9	6		50	12		9	1	131
Tuberculosis		8	23	54	19	2	38	1		145
Typhoid and paratyphoid fever			1	28	10	5		1	2	47
Whooping cough.........--		13	5	76	86	11	10	12	B	219

Vital statistics-First quarter, 1939.-The Bureau of Statistics of the Dominion of Canada has published the following preliminary statistics for the first quarter of 1939. The rates are computed on an annual basis. There were 20.0 live births per 1,000 population during the first quarter of 1939 as compared with 20.3 during the first quarter
of 1938. The death rate was 10.8 per 1,000 population for the first quarter of 1939 and 10.5 per 1,000 population for the corresponding quarter of 1938. The infant mortality rate for the first quarter of 1939 was 72 per 1,000 live births and the same rate prevailed for the first quarter of 1938 . The maternal death rate was 4.4 per 1,000 live births for the first quarter of 1939 and 4.5 per 1,000 live births for the same quarter of 1938.

The accompanying tables give the numbers of births, deaths, and marriages, by Provinces, for the first quarter of 1939, and deaths by causes in Canada for the first quarter of 1939 and the corresponding quarter of 1938:

Number of births, deaths, and marriages, first quarter 1939

Province	Live births	Deaths (exclusive of stillbirths)	Deaths under 1 year of age	Maternal deaths	Marriages
Canada ${ }^{\text {a }}$	55, 677	30,136	4, 026	244	11,955
Prince Edward Island	519	334	52	5	
Nova Scotia	2,770	1,9.5	246	14	695
New Brunswick	2,816	1, 423	280	16	452
Quebec.	19,523	9, 285	1,776	89	2,783
Ontario...	15, 935	10,661	893	68	4,341
Manitoba-	3,339	1,645	201	16	785
Baskatchewan.	4,073	1, 443	222	17	741
Alberta	8,753	1, 614	224	${ }^{9}$	1,037
British Columbis	2,949	1,906	132	10	1,035

${ }^{1}$ Exclusive of Yukon and the Northwest Territories.
Deaths, by cause, first quarter, 1939

Cause of death	Canada ${ }^{1}$ (first quarter)		- Province								
	1838	1939	Prince Edward Island	Nova Scotia	New Bruns- wick	$\begin{aligned} & \text { Que- } \\ & \text { bec } \end{aligned}$	Ontario	Manitoba	Sas-katchewan	Al berta	British Columbia
Automobile accidents...-	$\begin{gathered} 234 \\ 2,908 \end{gathered}$	$\begin{array}{r} 175 \\ 3,044 \end{array}$		165	10120		$\begin{array}{r} 70 \\ 1,141 \end{array}$	6228	168	18145	21255
Cancer --.............--			22								
Cerebral hemorrhage, cerebralembolism, and thrombosis											
Diarrhea and enteritis..--	$\begin{aligned} & 552 \\ & 463 \end{aligned}$	687 369	11$\cdots-20$	10	612	125	217 69	18	40 23	31 12	10
Diphtheria........	123	104				60	6	3	14	2	
Diseases of the arteries.-	2,598	2,997	2080	182	102	$\begin{array}{r} 599 \\ 1,175 \\ \hline \end{array}$	1, 21216	1269	128	136	219
Diseases of the heart....-	4,812	-, 25								287	870
Homicides	, 36			198			9598		268	8	${ }^{3}$
Infuenza.	$\begin{aligned} & 1,010 \\ & 1,762 \\ & 1,762 \end{aligned}$	2, 61	28		127	798		168			
Nephritis			3040	$-\cdots--9$ 213		$\begin{array}{r} 00 \\ 37 \\ 831 \end{array}$	15 541		54	46	87
Bneumonia--...........--	2, 13	1,812			161	$\begin{array}{r}782 \\ 1 \\ \hline\end{array}$	871	143	113	155	187
Poliomyelitis....-...-.-.											
Puerperal causes.-.-...--			B	14	${ }^{16}$	89 29	6828	162	177		101128108
8carlet fever--											
Buici des.	225	185		105		$\begin{array}{r} 31 \\ 708 \end{array}$	$\begin{array}{r} 70 \\ 301 \end{array}$	$\begin{array}{r} 16 \\ 105 \end{array}$	861	$\begin{aligned} & 22 \\ & 73 \end{aligned}$	
Tuberculosis	$\begin{array}{r} 1,564 \\ 1,00 \\ 1,010 \end{array}$	$\begin{array}{r} 1,547 \\ 388 \\ 9914 \\ 7,982 \end{array}$	${ }^{23}$		62						
Typhoid and paratyphoid fever.				1				3	1	4	
Violent deaths...-.-.-.-.--			11	88	34	180	372	83	42	34	100
Other specified causes.--			88	461	405	2,636	2,562	447	459	446	478
Whooping cough......--	160	163 139	11 1	7	18	64 67	12 31	6 1	2	7	7

[^21]
IRISH FREE STATE

Vital statistics-Quarter ended June 30, 1939.-The following vital statistics for the Irish Free State for the quarter ended June 30, 1939, are taken from the Quarterly Return of Marriages, Births, and Deaths, issued by the Registrar General and are provisional:

	$\underset{\text { ber }}{\text { Num- }}$	Rate per 1,000 pop- ulation		$\underset{\text { ber }}{\text { Num- }}$	$\begin{aligned} & \text { Rate par } \\ & \text { 1,000 pop- } \\ & \text { ulation } \end{aligned}$
Marriages	3, 593	4.9	Deaths from-Continued.		
Births...-	14,468 10	19.7	Induenza-.-------	205	0.3
Total deaths.	10, 383	${ }_{1}^{164} 4$	Measies.--...-	46 3	10.2
Deaths under 1 year of age...... Deaths from:	920	164	Puerperal sepsis.	11	10.2
Deathincer.-.......	892	1.2	Tuberculosis (all forms)	931	1.3
Diarrhea and enteritis (under 2 years)	109		Typhoid iever--.---	16 42	--.---.------
Diphtheria.--.---.....-...--	40				

${ }^{1}$ Per 1,000 live births.

ITALY

Communicable diseases-\& weeks ended June 18, 1939.-During the 4 weeks ended June 18, 1939, cases of certain communicable diseases were reported in Italy as follows:

Disease		May 22-28	May 29- June 4	June 5-11	June 12-18

LATVIA

Notifiable diseases-April-June 1939.-During the months of April, May, and June 1939, cases of certain notifiable diseases were reported in Latvia as follows:

SWITZERLAND

Communicable diseases-June 1939.-During the month of June 1939, cases of certain communicable diseases were reported in Switzerland as follows:

Disease	Cases	Disease	Cases
Cerebrospinal moningitis.	2	Poliomyelitis....	8
Chickenpox.-	198	Scarlet fever....	842
Diphtheria	47	Trachoma	1
German measles.	29	Tuberculosis...	253
Influenzs.	22	Typhoid fever--	2
Measles	56	Undulant fover	12
Mumps ${ }_{\text {Paratyphoid }}$	120 5	Whooping cough	150

reports of cholera, plague, smallpox, typhus fever, and YELLOW FEVER RECEIVED DURING THE CURRENT WEEK

Note.-A cumulative table giving current information regarding the world prevalence of quarantinable diseases for a six-month period appeared in the Public Health Reports of September 29, 1939, pages 17921806. A similar cumulative table will appear in future issues of the Public Health Reports for the last Friday of each month.

Cholera

China-Shanghai.-During the week ended September 16, 1939, 93 cases of cholera were reported in Shanghai, China.

Typhus Fever

Mexico-Jalisco State-Guadalajara.-During the week ended September 9, 1939, one death from typhus fever was reported in Guadalajara, Jalisco State, Mexico.

Yellow Fever

Colombia-Antioquia Department-San Carlos.-On September 2, 1939, one death from yellow fever was reported in San Carlos, Antioquia Department, Colombia.

[^0]: ${ }^{1}$ From the Division of Public Health Methods, National Institute of Health. Acknovledgment is made to Dr. Harold F. Dorn, Dr. Frank Lorimer, Mr. Leland C. DeVinney, Mr. M. Provus, and Miss Lolagene Convis for their valuable suggestions and criticism.

[^1]: 2 This excludes, of course, estimates for the "remote" past where such extrapolations would undoubtedly be illogical. In such cases the estimates are usually based on some fragmentary evidence, and are usually conjectural in character.
 ${ }^{1}$ For a detailed discussion of the methods used for postcensal estimates of population, see references (14) and (15).

[^2]: - The parameters of the curve are, of course, defined by these factors, but the character of the factors, and especially their interactions, are still obscure.
 ${ }^{6}$ This article by Dr. Reed is highly recommended as a clear statement of the problem. See also ref. (1).
 - Strictly defined, Whelpton's 5 -year age period-5-year time interval survival rates (16) are the ratios of L_{x+8} / L_{s} of the life tables; in other words, they are the probabilities of persons of age x to survive to age $x+5$.

[^3]: ${ }^{1}$ See footnote to table 1 C .

[^4]: ${ }^{7}$ The following formula was used for computing the different stabilized age compositions: $c(a)=8(a) e^{-r a} / \Sigma s(a) e^{-r a}$; see ref. (8). These symbols have the following meanings: $c(a)$ is the proportion of persons in the stabilized population at age $a ; e$ is the natural base of logarithms; r is the calculated or postulated true rate of increase; $s(a)=p(a)=\mathrm{L}_{x}$ in the corresponding life tables. This formula is equivalent to Lotka's equations (ref. 1, page 329). See also ref. (8).
 ${ }^{1}$ See footnote to table 1C.

[^5]: ${ }^{0}$ The corresponding percentages in 1930, as reported by the Census, were 9.1 and 9.0 . The r of -.0025 for the white population corresponds to a net reproduction rate of 0.93 (see table 2), which was practically the rate of the white population in the United States in 1935 (0).

[^6]: ${ }^{1}$ Based on hypothetical life table given in ref. (2), p. 194.

[^7]: ${ }^{10}$ For a concrete example of this procedure see ref. (s).

[^8]: ${ }^{11}$ Theoretically, any single age group should suffice as a basis for such estimates. One could, for instance, use only the group under 5 years of age in 1930, and by dividing its survivors ($L_{82.5} / L_{2.8}$) by the percent of population in the 60-64 group of the stabilized population, obtain an estimate of the population in 1990. Such a procedure would, however, increase the probable margins of errors, as the percent of each group is small in relation to the total population, and the errors would thus be accentuated. Therefore, all surFivors making up the age group 45 and over were used for estimating the population in 1975, all survivors of 50 and over for 1980, all survivors of 55 and over for 1985, and the survivors of 60 and over for 1990.
 usee footnote to table 4.

[^9]: ${ }_{13}$ The abnormal sex ratios of the Negro population are chiefly responsible for the greater discrepancies. Estimates confined to the Negro female population gave the percentage differences as $\mathbf{- 1 . 0}, 0.6,-0.4$, and -0.3 for the years 1975, 1980, 1985, and 1990, respectively.
 ${ }^{14}$ True rates of natural increase (r) for the total white population of each State in the United States in 1929-1931 were published by Dublin and Lotka (2). Net reproduction rates for the white population of each State, for each population class within the State (rural farm, rural nonfarm, total urban, and for groups of cities of different sizes), and for the larger individual cities were published by Karpinos (6, 7). Their corresponding r values are easily interpolated from table 2. The net reproduction rates and the true rates of natural increase for the Negro population in 1930, by States, are given in ref. (8).

[^10]: ${ }^{1}$ Contribution from the Rocky Mountain Laboratory, Hamilton, Mont., Division of Infectious Diseases, National Institute of Health.
 ${ }^{3}$ See the following table:

 Rabbit hemoglobin (made by laking 1 part of defibrinated blood with 3 parts of distilled
 water)

[^11]: ${ }^{3}$ These experiments were controlled by cultivating 2 strains of Bartonclla bacilliformis under the same conditions. No difficulty was had in maintaining these cultures and typical, good growth was observed in all transfer culture tubes. The writer is indebted to Dr. Peter K. Olitsky of the Rockefoller Institute for Medical Research for one of the strains, and to Dr. David Weinman of Harvard University Medical Sahool for the other.

[^12]: ${ }^{1}$ N. I. $=$ animal failed to react and found nonimmune on subsequent test.

[^13]: ${ }^{1}$ N. I. = animal failed to react and found nonimmune on subsequent test.
 ${ }^{4}$ These consisted of minced yolk sac of the developing chick embryo suspended in filtered human ascitio fluid. After 8 to 12 days incubation at $37.5^{\circ} \mathrm{C}$., smears were prepared from the cellular portion and stained with Giemsa.

[^14]: ${ }^{3}$ The writer is indebted to Prof. W. P. Clark of the University of Montana for the derivation of this name.

[^15]: - Supported by a grant from the National Cancer Institute.

[^16]: ${ }^{1}$ Data for 86 cities.

[^17]: See footnotes at end of table.

[^18]: 1 New York City only.
 ${ }^{2}$ Period ended earlier than Saturday.
 ${ }^{3}$ Typhus fever, week ended September 23, 1939, 97 cases as follows: North Carolina, 1; South Carolina, 7; Georgia, 27; Florida, 7; Alabama, 17; Mississippi, 1; Louisiana, 5: Texas, 32.
 ${ }^{4}$ Rocky Mountain spotted fever, week ended September 23, 1939, 5 cases as follows: Illinois, 1; Maryland, 1; North Carolina, 1; Tennessee, 2.

[^19]: Figures for Barre, Vt., estimated; report not received.

[^20]: Encephalitis, epidemic or lethargic.-Cases: New York, 4; Kansas City, 1; Grand Forks, 1; Baltimore, is Fort Worth, 1; Great Falls, 1; Pueblo, 1.
 Pellagra.-Cases: Kansas City, 1; Charleston, S. C., 1.
 Typhus fever.-Cases: Charleston, S. C., 7; Atlanta, 1; Savannah, 2; Miami, 8; Tampa, 1; Lake Charles, i; New Orleans, 2: Dallas, 3; Fort Worth, 1; Galveston, 3; Houston, 6 .

[^21]: ${ }^{1}$ Exclusive of Yukon and the Northwest Territories.

